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Abstract

Google Trends (GT) allows users to obtain reports on the evolution of the
popularity of searches made through the Google Search engine. Its main
output is the Search Volume Index (SVI), a relative measure of the popularity
of a term, which is computed using a sample of the searches. Due to the
sampling error, the reports are not completely consistent, as the same query
produces different time series that can widely change from day to day. This
paper simulates the process of generating the SVI time series in the same way
as GT does. By doing this, it has been shown that the sampling error could be
an important issue if the popularity of the term under study is relatively low.
Averaging multiple extractions from GT can only partially alleviate this.
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1. Introduction

Google Trends (GT) is a freely available tool developed by Google that allows users to obtain
reports of the evolution of the popularity of searchers made through the Google Search
engine. In the last decade, GT has become popular in the scientific literature because its
reports can be used to measure the population’s interest on any topic. Moreover, this data can
be easily accessed and is constantly updated.

The main output of GT reports are time series data representing the Search Volume Index
(SVI), a relative measure of the popularity of a term. To compute the SVI, Google does not
consider the whole set of searches they received in a given time period, but a sample with
unknown characteristics. Due to the sampling error, the reports are not completely consistent,
as the same query can produce different time series which change from day to day (Choi and
Varian, 2012).The importance of these inconsistencies is often minimized (Choi and Varian,
2012; Dilmaghani, 2019) although Cebrian and Domenech (2022) report that variations in
GT data may be significant enough to hinder the interpretability and reproducibility of the
models estimated with them.

To understand the inconsistencies of GT data, this paper proposes a simulation model of the
GT data generating process. This model is then used to analyze how a typical time series with
seasonality is distorted due to the sampling process and how the averaging of extractions can
mitigate the error, but only partially.

2. Related Work

The inconsistencies of GT time series have long been described, although most researchers
do not consider them relevant enough to affect their results (Choi and Varian, 2012; Preis et
al., 2013). Other research works identify these inconsistencies as an important source of error
and average multiple GT requests of the same time series on different days, or using some
tricks to force a new sample. This way, the time series are smoothed, thus reducing the
sampling error.

However, the number of extractions which are averaged widely vary across the literature. On
the one hand, D’ Amuri and Marcucci (2017) take 24 different extractions for the search term
“jobs” and report cross-correlations of at least 0.99 between extractions. On the other hand,
Cebriadn and Domenech (2022) extract queries related to Austrian cities on 6 different
occasions and find correlations between 0.79 and 0.94, while Carriére-Swallow and Labbé
(2013) use the average standard deviation to measure the sampling error and report values
above 15% for the term “Chevrolet” after 50 extractions.

To the best of our knowledge, there is no method for determining how many extractions
should be averaged to alleviate the sampling error, or which factors may affect it. To
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understand the intricacies of how the SVIs are produced and the effects of averaging multiple
extractions of the same GT time series, this paper proposes a simulation model to generate
the SVIs (and its sampling error) in the same way as Google Trends does.

3. Google Trends sampling

The process to compute SVIs is illustrated in Figure 1. It starts with the whole set of searches
that Google has received from 2004. From this set (Total Searches), GT draws a random
sample that is replaced over time. This introduces an unknown sampling error because the
parameters of this sampling, such as the coverage or how often the sample is replaced, are
not disclosed by Google. When a user requests the GT report for a given term and time period,
the sample is filtered to keep only those rows matching the request so that frequencies by
time period can be computed (Raw Popularity). Finally, the time series are normalized by
setting the SVI in the period with highest frequency to 100 and scaling the frequencies in
other periods proportionally (and rounding them to integers).

The sampling error introduced in GT reports is also illustrated in Figure 1. In the example
provided, the term a is reported with an SVI of (0, 100, 33), but if it were computed with the
Total Searches set, the result should have been (67, 100, 67).

4. Simulation and Results

This section provides some simulations of the GT process described in Section 3 to check
how the SVI time series change depending on the popularity of the search term and what the
effect of averaging multiple extractions is.

For illustrative reasons, it has been assumed that the total number of searches of the termy
follows a function with linear trend and a seasonal component, modeled with a sinusoidal
function with a period of 12 time units, as defined in Equation 1.

Y, = Byt + S, sin (i—z t) Q)

where Y is the number of searches of the term y at time t, 51 is the parameter defining the
strength of the linear trend, and S, defines the strength of the seasonal component.

For each time period t, the presence of the term y in the sample (y;) follows a binomial
distribution with parameters n equals the sample size, and p equals the proportion of searches
of term y among all the searches received by Google at that time period.

Therefore, the expected number of occurrences in the sample of term y at time t is:

ElY]=n=*p, )
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Figure 1: Process GT follows to compute an SVI time series. It is illustrated with an example with
three time periods (t, t, and t3) and two terms (a and b). Only the GT report for term a is
requested.

Notice that p; varies in time, being this variation the change in popularity of the term.

Since n and p; are unknown (as they are not disclosed by Google), we have studied the SVIs
of two terms with different popularity. Term H has an average frequency in the sample of
200 times, while term L is less popular and has an average frequency in the sample of 20
times through all the considered periods. Simulations are conducted considering GT requests
for 60 periods. The random process of generating the SVI for each term has been repeated
20 times, each one representing one extraction from GT.

Figure 2 shows the simulation results of 1 (left), 10 (center), and 20 (right) SVI extractions.
Light blue lines represent each individual extraction, while dark blue lines illustrate the
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average of all the extractions in each plot. Plots in the top row refer to the most popular term
(H), while plots in the lower row refer to the less popular term (L). Each plot includes the
Pearson’s correlation coefficient (r) of the time series in dark blue with the actual popularity
of the term (defined by Equation 1).

Plots in the left part of Figure 2 evidence that a single extraction has significant noise. This
noise, which is introduced by the sampling process, can be alleviated by averaging multiple
extractions. After averaging 10 extractions, the curve for the term with high popularity (H)
is smoother, as evidenced by the r = 0.997 value as well. However, the less popular term (L)
requires more extractions to obtain a good approximation to the actual trend. Indeed, after
averaging 20 extractions of the less popular term, the correlation coefficient r is still below
the one of 10 extractions of the high popular term.

These simulation results highlight the relationship between the sharpness of the SVI and the
absolute popularity of the term and, therefore, the need for averaging more GT extractions
when studying less popular terms. However, as one can observe in Figure 2, there is a side
effect related to the construction of a time series as the average of a number of extractions:
the range of the SVI is reduced. In the case of the less popular term (L), the SVI takes values
from 18 to 100 in a single extraction (bottom-left plot). When the average of 20 extractions
is considered, SVI ranges from 27.1 to 81.3 (bottom-right plot). This implies that the value
of a single extraction (for instance, when using GT for nowcasting purposes) cannot be
directly compared to the series obtained after averaging multiple extractions.

5. Conclusions

Although Google Trends has become a very popular data source among researchers, its
sampling error has not been intensively studied. This paper has replicated the process of
generating the SVI time series in the same way as GT does. By doing this, it has been shown
that the sampling error could be an important issue if the popularity of the term under study
is relatively low, as the quantity of noise it introduces in the series is noticeable.

The technique of extracting GT data multiple times and using the average of the series has
also been studied. Our results showed that it certainly alleviates some of the variability
introduced in the random sampling, but the number of repetitions needed to smooth the curve
heavily depends on the absolute popularity of the term. Moreover, this procedure changes the
range and scale of the SVI time series, thus increasing the complexity of using GT data for
nowcasting and forecasting, as additional transformations should be considered.
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