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Abstract 

Road traffic accidents (RTA) are a major cause of death and injury around the 

world. The use of Supervised Learning (SL) methods to understand the 

frequency and injury-severity of RTAs are of utmost importance in designing 

appropriate interventions. Data on RTAs that occurred in the city of Cape 

Town during 2015-2017 are used for this study. The data contain the injury-

severity (no injury, slight, serious and fatal injury) of the RTAs as well as 

several accident-related variables. Additional locational and situational 

variables were added to the dataset. Four training datasets were analysed: the 

original imbalanced data, data with the minority class over-sampled, data with 

the majority class under-sampled and data with synthetically created 

observations. The performance of different SL methods were compared using 

accuracy, recall, precision and F1 score evaluation metrics and based on the 

average recall the ANN was selected as the best performing model on the 

validation data. 

Keywords: Road traffic accidents; supervised learning methods; imbalanced 

data.. 
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1. Introduction 

A road traffic accident (RTA) can be defined as a rare, random, multi-factor event always 

preceded by a situation in which one or more road users fail to cope with the road 

environment (Rospa, 2002). In 2018, there were 12,921 fatalities recorded in South Africa as 

a result of RTAs. In addition to the social cost, RTAs also have significant economic costs 

for South Africa. In order to effectively reduce the number and injury-severity of RTAs in 

South Africa, a better understanding of the relationship between RTA injury-severity and 

accident-related factors is needed. The use of supervised learning (SL) methods can be very 

useful for informing future road safety campaigns and potentially reducing the frequency and 

injury-severity of RTAs.  

Several statistical models such as logistic regression, classification and regression trees 

(CART), random forests (RF) and artificial neural networks (ANNs) have been effectively 

employed in previous research in different countries including Saudi Arabia, the United 

States, Italy and Canada, (Al-Ghamdi, 2002; Kong & Yang, 2010; Chang & Wang, 2006; 

Montella, et al., 2012; Akın & Akbaç, 2010; Chong, et al., 2005; Olutayo & Eludire, 2014) 

to predict injury-severity of RTAs. These SL methods were shown to regularly outperform 

logistic regression methods. 

There are very few studies conducted on RTAs in South Africa predicting RTA injury-

severity. South African literature mostly consists of identifying significant contributors to 

RTAs. The literature suggests that the quality of South African RTA data is generally poor 

due to issues such as underreporting, duplication as well as missing values in the data. There 

are limited studies modeling RTA injury-severity using SL methods, with the focus area 

mainly in the province of Gauteng (Govender, et al., 2020; Mokoatle, et al., 2019; Twala, 

2013; Saar-Tsechansk & Provost, 2007; Moyana & Chibira, 2016). There is a definite need 

for more research focusing on South African RTA injury-severity prediction especially in the 

Western Cape province, which is one of the few provinces in South Africa with 

comprehensive and easily accessible RTA data. This research aims to contribute to the 

literature by including variables generated from external resources (ie. weather-related 

variables and geolocation related variables) in addition to the variables obtained from the 

provincial database. Additionally, it is aimed to highlight the best SL modeling and data 

sampling approaches for addressing the issue of class imbalance in RTA data. 

2. Data and Methods 

2.1. Data 

The dataset used for this study contains records of more than 82,000 RTAs that occurred 

during the 2015-2017 period in Cape Town. The data were sourced from the City of Cape 
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Town, one of the major cities in South Africa and located in the Western Cape Province. The 

city has a well developed and managed road network and provides researchers with access to 

its comprehensive RTA database. The dataset contains several variables related to the 

accident such as street name, crash date, weekday, time of day, alleged cause, crash type, 

vehicle type, number of vehicles, number of passengers, number of pedestrians involved in 

the accident as well as the worst injury-severity sustained during the accident. Additionally, 

the data was enriched with weather-related variables such as temperature, precipitation, wind 

speed, visibility and cloud cover. Several other variables such as those relating to whether an 

accident occurred on a public holiday, on a weekend, the season the accident occurred, the 

number of vehicles involved, whether the accident occurred during peak traffic times as well 

as whether an accident occurred at an intersection or non-intersection were also added. The 

location of an accident (amongst other variables) was geocoded in order to obtain 

geographical coordinates for each accident. After inspecting that valid coordinates were 

returned for each accident’s street address, the longitude and latitude coordinates were added 

as variables to the dataset. 

A common issue with RTA datasets is that the classification categories are imbalanced. The 

target variable consists of four injury classes, namely: “fatal” (0.27%), “serious” (2.54%), 

“slight” (10.33%) and “no injury” (86.86%) and is severely imbalanced in Cape Town for 

the period of 2015-2017 (N= 82,363). Imbalanced data can negatively affect the performance 

of certain classification methods, especially with regards to predicting the minority class 

(Weiss & Provost, 2001). This is an issue since the minority class is often the class 

researchers are most interested in predicting correctly. 

Three common data sampling approaches used by researchers to address imbalanced data are 

utilised in this study, namely (i) undersampling of the majority class, (ii) oversampling of the 

minority class and (iii) Synthetic Minority Oversampling Technique (SMOTE). SMOTE is 

a popular over-sampling method developed by Chawla, et al. (2002), that creates artificial 

data examples of the minority class in order to improve the imbalanced distribution of the 

target variable. While random over-sampling methods simply duplicate existing minority 

class examples, SMOTE creates artificial minority examples by extrapolating between 

existing minority examples by finding the k-nearest neighbours of the minority class for each 

minority example and then generating artificial examples in the feature space of the nearest 

neighbours. The artificial examples cause the classifier to create larger and less specific 

decision boundaries resulting in decision region for the minority class to become more 

general (Chawla, et al., 2002). 

The original imbalanced data as well as the data sets generated under different sampling 

schemes are analysed using multinomial logistic regression, CT, RF, Gradient Boosted 

Machine (GBM) and ANN methods to predict the target variable, the worst injury-severity 

resulting from a RTA. The next section briefly discusses the methods, therefore the authors 
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recommend reading the resources such as Hastie, et al., (2009) and Gareth, et al., (2013) for 

further details of the various methods. 

2.2. Methods  

The multinomial logistic regression (MLR) model calculates the probability of an RTA 

belonging to each injury-severity category relative to a reference category, “no injury” in this 

case (Yasmin & Eluru, 2013). Classification trees (CT) are a non-parametric classification 

method that do not require any pre-defined underlying relationship between the predictor 

variables and the target variables to be specified. CTs use a tree-like structure in order to 

model the relationship between the predictor variables and the target variable. While a CT 

might be easily interpretable, it comes at the expense of predictive accuracy as well as high 

sampling variability (Chang & Wang, 2006). Random forests (RFs) can be used to reduce 

the variance of a SL method such as CTs (Hastie, et al., 2009). This method is built on the 

idea that averaging a set of predictions reduces the variance. RF is an ensemble learning 

method, meaning that many CTs are combined/ensembled into one, better model. An RF 

model is built by growing a multiple number of trees, 𝐵 > 0, on bootstrapped samples 

(random sub-samples of data with replacement). Gradient boosting machines (GBM), similar 

to RF, is an ensemble learning method. Unlike RF, which grows trees independently, GBM 

grows trees sequentially. This means each tree can learn from the errors made by the previous 

trees. Artificial neural networks (ANN) are another SL method that can be used for both 

regression and classification problems. ANNs are especially useful when one does not need 

interpretable results and when there are non-linear relationships present in the data (Hastie, 

et al., 2009). 

2.3. Evaluation Metrics  

To identify the “best” performing model with regards to predicting RTA injury-severity, 

evaluation metrics are needed to compare the performance of the different models 

(multinomial logistic regression, CT, RF, GBM and ANN). While accuracy might be the 

most simple metric to understand and calculate, it can be misleading especially when dealing 

with imbalanced data. A model could classify all observations as the majority class and still 

achieve a relatively high accuracy despite it failing to identify any observations belonging to 

the minority class. For this reason, the validation data performance of the models are 

evaluated using the average (i) accuracy, (ii) recall, (iii) precision and (iv) F1 score of each 

model (Gareth, et al., 2013, p. 149, Grandini, et al., 2020). 

3. Results 

The analyses were conducted using R (R Team, 2013) and all plots were created using the 

“ggplot2” package (Wickham, et al., 2016) and models were built with the “caret” (Kuhn, 
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2008) package. Hyperparameter tuning for RF, GBM and ANN models was performed under 

University of Cape Town’s ICTS High Performance Computing cluster: hpc.uct.ac.za. 

Different hyperparameters were tested with cross validation. For RFs, the number of 

predictors at each split considered were (2, 3 and 7), and the number of trees were (500 and 

1000); in the case of the GBM models, the number of trees considered were (50, 100, 150, 

500), the different shrinkage parameter or learning rates were (0.005,  0.01, and 0.05), and 

the number of splits in each tree were (2, 10, and 20); for NNs, three hidden layers with 

varying number of neurons (layer1: 30, 40, 55, layer2: 0, 15, 25, 35, layer3: 0, 5, 15, 25) were 

tested with different weight decay (0.0001, 0.001, 0.1) settings. 

The average recall of the different SL methods are compared in order to identify the best 

model based on its performance on the validation data. The comparisons of the average recall 

of all SL methods are shown in Figure 1 (a). 

  

Figure 1. (a) Comparison of average recall (b) Comparison of recall for “fatal” RTAs 

There is a noticeable difference in average recall between the different SL methods. As 

shown in Figure 1 (a), the model with the highest average recall is the ANN trained on the 

SMOTE training data (46.89%). The multinomial logistic regression model trained on the 

SMOTE data achieved the second highest average recall. The GBM model trained on the 

oversampled data and the CT trained on the SMOTE data have the next highest average recall 

respectively with RF model trained achieving the lowest value. It is important to note that 

some models, ie. ANN in the original dataset, failed to predict the true positive cases (fatal 

class), hence resulting in evaluation metrics of 0%. 

Since RTAs that result in “fatal” or “serious” injuries carry the highest social and economic 

impact, the misclassification of these classes is undoubtedly the most important issue in 

predictions. Therefore, a comparison of the recall for the “fatal” RTAs of the different SL 

methods is shown in Figure 1 (b). The results show that ANN and CT trained on the SMOTE 

data achieved the highest recall for “fatal” RTAs compared to the other models. The results 

show that the ANN and CT models achieved the highest recall for “fatal” RTAs overall, 
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followed by the GBM, multinomial logistic regression and finally the RF models 

respectively. The CT, RF and GBM models trained on the original data could not identify 

any “fatal” RTAs. The RF model trained on the oversampled data also failed to identify any 

“fatal” RTAs. 

The ANN model trained on the SMOTE data was selected as the “best” performing model 

and its performance on the test data, also known as “unseen” data, is assessed. The confusion 

matrix of the ANN’s performance on the test data is shown in Table 1, while the evaluation 

metrics are shown in Table 2. 

Table 1. Confusion matrix of ANN on test data 

  Actual Category 

  Fatal No Injury Serious Slight 

Predicted 

Category 

Fatal 38 1011 223 574 

No Injury 2 12257 64 698 

Serious 1 132 80 157 

Slight 3 908 52 272 

Overall Accuracy: 76.78% 

 

Table 2. Evaluation metrics of ANN on test data by class 

Class Recall (%) Precision (%) F1 (%) 

Fatal 86.36 2.06 4.02 

No Injury 85.67 94.13 89.70 

Serious 19.09 21.62 20.28 

Slight 15.99 22.02 18.53 

Average 51.78 34.96 33.13 

 

The model has an overall accuracy of 76.78% while being able to correctly identify some 

RTAs belonging to each of the four different injury-severity categories. The model has a 

higher average recall (51.78%) than any of the SL methods manage to achieve on the 

validation data. As shown in Table 1, the model also managed to correctly identify a large 

number of “fatal” and “no injury” RTAs, in contrast to fewer correctly identified “slight” and 

“serious” RTAs. Table 2 also shows that the ANN model has a very high recall for both 

“fatal” (86.36%) and “no injury” (85.67%) RTAs and a comparatively low recall for “slight” 

(15.99%) and “serious” (19.09%) RTAs. This is consistent with the findings of Chong, et al. 

(2005), who found that several SL methods applied in their study predicted “no injury” and 

“fatal” RTAs most accurately out of all the injury-severity categories. The model also has a 

high precision for “no injury” RTAs, indicating that it is very precise at correctly identifying 

“no injury” RTAs. This is in contrast with “fatal” RTAs, for which the model has a low 
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precision score. This suggests that although the model correctly identifies the vast majority 

of “fatal” RTAs, it also results in a large number of false positives for “fatal” RTAs. 

4. Recommendations and Future Work 

Imbalanced data is a common issue found with RTA data. The comparison of the CT, RF, 

GBM and ANN models trained on the four different training datasets indicate that the best 

data sampling technique to address class imbalance in RTA datasets is the SMOTE technique 

with regards to maximising average recall. It is therefore recommended that future 

researchers use the SMOTE technique to address imbalanced RTA datasets when predicting 

RTA injury-severity. 

It is recommended that the City of Cape Town expand and improve the quality of their RTA 

data. This study added several new predictor variables to the dataset obtained from the City 

of Cape Town, several of which were found to be significantly associated with RTA injury-

severity. This will allow future researchers to analyse and model RTA injury-severity more 

comprehensively and identify the most comprehensive set of predictors that will help reduce 

the frequency and injury-severity of RTAs. 

The data used for this study was sourced from the City of Cape Town, who collected and 

processed the data from the SAPS. The data contained several accident-related variables 

along with the RTA injury-severity. However, compared to RTA data used in similar 

international studies, the data used for this study contains relatively few accident-related 

variables. This can negatively affect the performance of the SL methods as the models are 

trained on data that is potentially missing some important accident-related variables. 

The geographical coordinates of an RTA were added as predictor variables to the data. The 

use of models that explicitly take the spatio-temporal nature of RTA data into account could 

be beneficial since this study determined that the geographical location of an accident is 

significantly associated with RTA injury-severity. Reducing the cardinality of predictor 

variables in RTA data may also result in more interpretable models. 
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