

Using Big Data in Official Statistics: Why? When? How? What for?

GianLuigi Mazzi, Technical Director GOPA Luxembourg, ¹

CARMA 2018, Valencia

¹Contact email: GianLuigi.Mazzi@gopa.lu

Outline

1 Introduction

- 2 Traditional versus Big Data Sources.
- 3 Delimiting and Classifying the Big Data Ecosystem.

- 4 Big Data Types.
- 5 Big Data and Key Policy Actions.
- 6 Macro-economic Growth and Stability
- 7 Labor Market Policies
- 8 Sustainable Development Policies
- 9 Providing Some "Answers"

Introduction

- The use of big data in official statistics is still an open issue.
- Policy makers request more and more information not necessarily available in traditional statistics.
 - □ Big data might fill such gaps
- But using big data is a challenging exercise for official statisticians who face 2 main obstacles:
 - They are often based on "unrequested information" (not collected on the basis of a robust sampling scheme);
 - \Box And they are often available in unstructured form.
- Why, When, How and What for should we use these data?
- We try to provide some directions without pretending to be neither exhaustive nor conclusive, but aiming to provide an additional contribution to the ongoing debate.

Traditional versus Big Data Sources.

Traditional versus Big Data Sources (1)

- Traditional data sources such as census, surveys, opinion pools, administrative registers typically structured as:
 - □ Panel: same phenomenon recorded on various units at the same time;
 - □ Spatial series: same phenomenon recorded in different geographical locations at the same time;
 - □ Time-series: same phenomenon recorded at different points in time, possibly equally spaced;
 - □ Combinations of the above structures: spatial time series, time series panels.
- Big data usually look different:
 - □ irregularly recorded
 - □ characterized by discontinuities and irregularities
 - appear as a pretty chaotic amount of information
 - □ Big data typically unstructured.

Traditional versus Big Data Sources.

Traditional versus Big Data Sources (2)

- Well consolidated way of dealing with traditional data
 - availability of a large variety of tools and methods serving a number of purposes
 - $\hfill\square$ well-tested and powerful software solutions
- Much more complex working with big data
 - converting them into structured data
 - working on original unstructured data
- Working on structured big data
 - existing tools and methods should be adapted to the size of data and to some big data specific features
 - new software developments required
- Working on originally unstructured data
 - $\hfill\square$ developing new tools: data analytics
 - or improving existing techniques: data mining

Traditional versus Big Data Sources.

Traditional versus Big Data Sources (3)

 \implies If working with big data is so demanding and challenging, why keep insisting and not just concentrate on traditional data?

Some more questions still to be added:

When big data should be really beneficial for policy makers, analysts and statisticians?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- How should big data be used?
- What should big data be used for?

Some tentative and not exhaustive answers provided later:

- Stemming from the provided examples;
- Unavoidably reflecting personal views.

Delimiting and Classifying the Big Data Ecosystem

Delimiting and Classifying the Big Data Ecosystem

- IBM so-called 4Vs classification
 - 1 Volume
 - 2 Velocity
 - 3 Variety
 - 4 Veracity
- UNECE classification
 - 1 human sourced information including social networks
 - 2 traditional business systems
 - 3 internet of things
- Size based classification of big data by Dornik and Hendry
 - 1 Tall: not many variables but many observations;
 - 2 Fat: many variables and few observations;
 - **3** Huge: many variables and many observations.

Big Data Types (1)

- None of the classifications proposed above fully satisfactory
- Instead, propose a classification of big data by types based on their origin and generating process.

- Associating big data types to relevant policies.
- Identifying advantages and drawbacks of various big data types

Big Data Types (2)

By type and main utilization.

- 1 Financial market data: Macroeconomics, financial sector monitoring
- 2 Electronic payments data: Macroeconomics, inflation, consumers behavior
- 3 Mobile phone data: Labor market, sustainable development
- 4 Sensor data and the Internet Of Things : Sustainable development, urban monitoring
- **5** Satellite image data: Sustainable development, economic growth and land utilization
- 6 Scanner prices data: Macroeconomics, inflation, consumers behavior
- 7 Online prices data: Macroeconomics, inflation, consumers behavior
- 8 Online search data: Macroeconomics, sustainable development, human behavior
- 9 Textual data: Human sentiments, confidence, uncertainty
- **IO** Social media data: Macroeconomics, sustainable development, human behavior

Big data and key policy actions (1)

- Policy makers in different areas need complete, reliable and often timely information for designing, implementing and monitoring policy initiatives
 - $\hfill\square$ Using qualitative and quantitative information
- Information set based on traditional sources

surveys, opinion pools, administrative data

- Available information no necessarily in line with policy makers expectations
 - $\hfill\square$ lack of information in some areas or domains
 - □ available information not enough reliable
 - information made available too late
- Using alternative source: big data
 - □ filling existing information gaps
 - allowing for designing and implementing new indicators
 - helping in identifying new patterns and relationships useful for policy making activities

Big data and key policy actions (2)

Focusing on a few relevant policies

- macro-economic growth and stability
- □ labor market policies
- sustainable development policies
- Describing how big data can contribute in building-up the information sets required for each policy

□ associating user needs with specific big data types

Macro-economic Growth and Stability

Macro-economic Growth and Stability (1)

- Producing earlier estimates of GDP household consumption and retail sales turnover
 - □ financial market data, electronic payment data, online search data (Google Trends data)
 - □ Koop and Onorante (2013), Baldacci et al (2016) and Buono et al (2018)
- Producing weekly/daily indicators for GDP households consumption and retail sales turnover:
 - □ financial market data, electronic payment data
 - □ Galbraith and Tkacz (2007) Stock and Watson (2002a), Giannone, Reichlin and Small (2008) and Aprigliano et al (2016).
 - $\hfill\square$ Complex models (data reduction tools and mixed frequency models).
- The real benefit of producing high frequency indicators still to be evaluated:
 - Better monitoring of the economic situation versus risk of confusing users.

Macro-economic Growth and Stability (2)

Measuring inflation

- We already have timely indicators
- that could be improved using scanner price data and online price data;

- Improving the overall quality of the inflation measurement
 - improved coverage
 - up-to-date weights at a highly detailed level
- Can even replace the HICP (experiments in Netherlands, Luxembourg etc.).
- Potential for nowcasting and/or forecasting inflation

Macro-economic Growth and Stability

Macro-economic Growth and Stability (3)

New information provided by big data

- Volatility and market micro-structure studies financial market data
- □ Consumer behavior in relation to unexpected events electronic payment data
- Analysis on the price behavior at industry and regional level scanner price data
- Consumer sentiment and consumer confidence social media data
- Providing information on economic uncertainty based on texts from newspapers, twitter and etc.

□ text mining and text analytic techniques

Labor Market Policies (1)

- Labor market indicators usually based on periodic surveys
 - implementation problems in developing countries
 - some persisting drawbacks in terms of timeliness also in developed countries
- Big data can complement traditional information system
 - $\hfill\square$ labor force surveys cannot be discarded
- Role of big data can significantly differ according to the degree of development of countries
 - □ mostly used for improving timeliness in developed countries;
 - providing basic market information in developing countries.

Labor Market Policies (2)

Improving employment/unemployment estimates:

- online search data (Google Trends), mobile phone conversation, mobile phone position;
- □ D'Amuri and Marcucci (2012) and Tuhkuri (2016) investigate the power of big data in nowcasting and forecasting Unemployment data by using Google Trend.
- More detailed pictures at geographical level
 - □ Toole et al. (2015) forecasted the employment at regional and European countries levels by using the call duration information and changing behavior in social communication related to the employment status; innovative approach based on Bayesian classification models.
- Possibility of obtaining information already during the current period
- Encouraging results obtained in several developed or developing countries (European union and Africa)

Labor Market Policies (3)

New information provided by big data:

- individual employment status
 - $\hfill\square$ using mobile phone data validated by household survey data
- measuring the effect of employment shocks on individual behavior
 - mobile phone and GPS data
- improving the match between job vacancy and labor demand

 $\hfill\square$ disseminating information by SMS

- using big data from online job searching portal to assess demand for workforce skills and observing job-search behavior and improving skills matching
 - online data search

Sustainable Development Policies (1)

• Complexity of the sustainable development policies:

□ 17 goals, 169 targets, 230 indicators

- Traditional information system unable to ensure the follow up of all goals and targets
 - persistent differences among developing and developed countries
 - □ lack of traditional information particularly relevant for some goals: difficulties in measuring complex phenomena (poverty, well-being)

- Several big data types can help filling the information gap
 - $\hfill\square$ ensuring a better follow up of goals and targets.

Sustainable Development Policies (2)

As examples, we focus on some Sustainable Development Goals:

- Goal 01: End poverty in all its forms everywhere
- Goal 03: Ensure healthy lives and promote well-being for all at all ages
- Goal 08: Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all
- Goal 11: Make cities and human settlements inclusive, safe, resilient and sustainable

SDG 1: End poverty in all its forms everywhere

- Traditionally measured by surveys:
 - $\hfill\square$ surveys often ignore people outside the traditional household
- Using call data records (mobile phone) can produce good estimates of poverty
 - $\hfill\square$ in absence of reliable surveys
 - \Box selecting appropriate keywords related to the poverty status
- Using complex methods based on mobile phones data supported by other information such as:
 - $\hfill\square$ statistical survey
 - night lights satellite images
 - □ automated recognition of roofing materials of new structures (sensor)
 - trade estimation via real-time postal traffic analysis
 - $\hfill\square$ trends in retail purchasing behavior
- The last approach, ideally provides the most reliable estimation of poverty almost in real time:
 - $\hfill\square$ disaggregated at regional and local level

SDG 3: Ensure healthy lives and promote well-being for all at all ages

- Well-being is a complex multidimensional phenomenon not easily measurable
 - $\hfill\square$ involving qualitative and quantitative variables
 - $\hfill\square$ surveys on individual well-being
- Alternative well-being measures based on Google trend data obtained by choosing well-being related keywords
 - good approximation of survey based measures
 - better timeliness
 - data available weekly
 - possibility to derive a total measure of well-being
- Other aspects related to the well-being:
 - □ good health: mapping the movement of mobile phone users to predict the spread of infectious diseases
 - well-being of women and girls: social media data, mobile phone data

SDG8: Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all

- Macroeconomic indicators generally reliable especially in developed and emerging countries
 - $\hfill\square$ some lack of information observed at sub country level
- Satellite data can help in providing a detailed mapping of economic development
 - □ using lighting nighttime luminosity (combining satellite images with population distribution)
- Mobile phone data can provide detailed picture of the employment status and work conditions

 $\hfill\square$ complemented also by web search engine data

- Mobile phone also as an instrument for helping unbanked people in accessing financial services
 - □ micro-credit facilities

SGD 11: Make cities and human settlements inclusive, safe, resilient and sustainable

- Traditional information not particularly developed at urban level (small area estimates can only partially fill the gap)
- Since more than 40% of global population is planning to live in urban area by 2030, reliable and complete information is needed
- Monitoring urban congestion and traffic situation
 - $\hfill\square$ traffic lights data and other sensor data
- Mapping mobility patterns
 - mobile phone data
 - $\hfill\square$ identifying poverty area within cities: satellite imagery data

- Monitoring pollution
 - IOT sensor data
- Land use and cover (satellite data)

Providing Some "Answers" (1)

Why keep insisting on big data and not just concentrate on traditional data?

Big data has an impressive potential in terms of information they contain

 $\hfill\square$ not yet fully discovered, understood and used

- They can influence several aspects of our daily life and habits
 - □ decision making processes, understanding the society, providing an almost real-time and more granular picture of our community
- They can positively influence sciences
 - observational sciences, medicine, economy and finance, social sciences, education and more
- But big data have to be known, understood and interpreted carefully
 - avoiding misleading or erroneous conclusions
 - big data are an information set far to be perfect

Providing Some "Answers" (2)

When big data should be really beneficial for policy makers, analysts and statisticians?

- Filling gaps in traditional information sets
 - □ timeliness, relevance, coverage (cross-sectional level, geographical level)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- To complement non-adequately developed traditional information systems
 - $\hfill\square$ developing and under-developed countries
- Do helping measuring complex phenomena
 - $\hfill\square$ poverty, well-being

Providing Some "Answers" (3)

How should big data be used?

- As much as possible complementing traditional information systems
 - $\hfill\square$ replacement is definitely premature
 - $\hfill\square$ exceptions: developing and under-developed countries
- Within a robust rationally build and methodologically sound environment
 - □ adequate infra-structure for hosting and treating big data
 - □ adapted traditional statistical and econometric tools do deal with large and often sparse datasets
 - developing new tools dealing with unstructured data: Data mining, Data analytics
- Having clearly in mind big data potential but also its limitations and drawbacks
 - non based on a robust sampling frame
 - $\hfill\square$ based on often non-requested information

Providing Some "Answers" (4)

What should big data be used for?

- Improving timeliness
 - $\hfill\square$ nowcasting/forecasting
 - □ advanced estimates (already available during the reference period)
 - \Box proving higher frequency estimates (weekly/daily)
- Providing information on key phenomena when traditional data sources are lacking

 $\hfill\square$ unemployment/employment, inflation

Providing indicative measures of complex phenomena

□ material deprivation

- Providing information on individual and collective behavior and feelings
 - $\hfill\square$ indicators measuring changes in behavior
 - sentiment indicators
 - □ confidence indicators

Using Big Data in Official Statistics: Why? When? How? What for?

Thank You!!!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Contact email: GianLuigi.Mazzi@gopa.lu