	Data	

Macroeconomic Indicator Forecasting with Deep Neural Networks

Tom Cook & Aaron Smalter Hall

Jul 12, 2018

	Data	

2 Method: Neural Networks

	Data	

Introduction	Data	
•0		

Motivation

- Forecasting is essential to bank
- We want forecasts to be "good"
- Some dimensions to consider:
 - Accuracy
 - Responsiveness
 - Also: Precision, Effort to produce, Data Requirements, Model Dependence
- For forecasts of macro indicators, room for improvement in several areas

Introduction	Data	
0•		

This Paper

- Deep learning represents opportunity to improve on forecasts
- Upshot:
 - We test several neural network architectures
 - Find most work well in near term
 - Encoder-decoder brings good performance at up to 4 quarters

Method: Neural Networks	Data	
•0		

What Is a Neural Network?

- Developed in 1950s, abandoned by 70's, revitialized in 2000/2010's
- A model comprised of one or more neurons. Each neuron is a linear combination of inputs transformed through an activation function.
- neurons connected in different network structures (architectures)
- Neural networks are universal function approximators
 - We don't need to specify a model, we just need to build an architecture with sufficient capacity to approximate the DGP
- Used to produce breakthroughs in accuracy of ML tasks in last few years
 - We expect similar improvements in performance with forecasting

Method: Neural Networks	Data	
00		

Architectures

- Fully Connected Architecture
 - Most basic form of neural network
 - Several layers of fully connected nodes; each node in layer gets inputs from all nodes in previous layer
- Recurrent (LSTM)
 - Network built for sequence data. Essentially, a network with 'memory'. Leverages temporal order in data.
- Encoder Decoder
 - Two LSTM cells: encoder cell, decoder cell. Encoder cell generates representation of temporally ordered input data (time series). Decoder cell interprets representation and extrapolates to desired forecast horizon.

More about architectures

Introduction Meth	od: Neural Networks D	Data R	Results
	•	•• c	

Data Choices

- Focus on unemployment
 - Limited revision limits 'correct vintage' problems
 - Mean-reverting
 - Sufficiently Long
- Input:
 - Civilian unemployment rate (UNRATE)
 - Pulled from FRED (Aug 2017)
 - Monthly values used, quarterly predictions generated
 - last 36 months UNRATE
 - First, Second Differences
- Target:
 - 0-4 quarter predictions
 - 30 runs of each model

00 00 0 00	

Benchmark: SPF

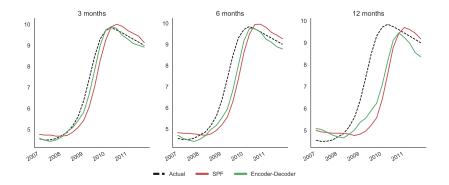
- Survey of Professional Forecasters
 - Usually about 40 responses for given quarter
 - Individual responses available, Median response is SPF point-estimate
 - Generally, SPF forecasts improve on VAR
 - Allows us to see how our model compares to field of experts
 - Variance in SPF provides additional insight for model comparison
- Compare against Individual performance (average participant performance)
- Compare against Combined (ensemble) SPF Forecast

	Data	Results
		0000

Individual model comparisons

- Assessing Performance:
 - Primarily compare MAE and distribution of MAE over repeated trainings
- Fully Connected and LSTM perform well in short-horizons (0, 3 month)
 - either out-perform or remain competitive with SPF
- Encoder-decoder performs well at all horizons

	Data	Results
		0000


Architecture Performance vs SPF participants

horiz		Fully Connected	LSTM	Encoder Decoder	DARM	SPF
0 Months	Mean MAE	0.076	0.104	0.044	.117	0.135
	St. Dev.	0.027	0.058	0.002		0.063
3 Months	Mean MAE	0.253	0.273	0.184	.328	0.271
	St. Dev.	0.029	0.028	0.001		0.093
6 Months	Mean MAE	0.441	0.473	0.305	.493	0.412
	St. Dev.	0.041	0.066	0.005		0.157
9 Months	Mean MAE	0.638	0.748	0.461	.658	0.568
	St. Dev.	0.048	0.110	0.007		0.228
12 Months	Mean MAE	0.870	1.017	0.620	.907	0.720
	St. Dev.	0.049	0.207	0.006		0.291

Error Distributions

	Data	Results
		0000

Encoder Decoder Response Comparision¹

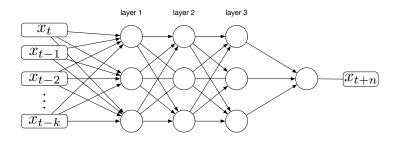
¹Two-period gaussian-window smoother applied

	Data	Results
		0000

Conclusions

- All models compare well to SPF in short term
 - Suggests robustness to modeling type for short-term forecasting
- Encoder Decoder performed better than SPF at all horizons
 - Improvement in performance appears to come from improvement in responsiveness to shifts in economic conditions

00 00000 00 00 0000 00000 00000 00000	Error Distributions	Ensemble Models	V SPF		LSTM	ENCDEC
	00000	00		0000	00000	


Architectures	Error Distributions		V SPF		LSTM	ENCDEC
• 0 0000	00000	00	00 00000	0000	00000	00000 0000000

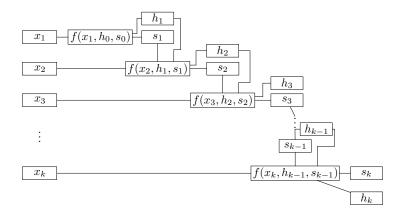
Fully Connected Architecture

- Several layers of fully connected nodes
- Each node in layer gets inputs from all nodes in previous layer
- Each node produces a linear combination of inputs transformed through a transformation function
- Layers can have varying numbers of nodes
- As tested, we include residual connection and dropout

Architectures	Error Distributions	V SPF	LSTM	ENCDEC
0 0 0000		00 00000		00000 0000000

Example fully-connected architecture for univariate timeseries forecast

Architectures	Error Distributions	Ensemble Models	V SPF		LSTM	ENCDEC
00 0000	00000	00	00 00000	0000	00000	00000 0000000


Architectures	Error Distributions	V SPF	LSTM	ENCDEC
00 ●000		00 00000		00000 0000000

Recurrent Architecture (LSTM)

- Comes from sequence-based research (temporal/order dependent)
 - e.g. translation, language processing
 - Intuition: memory of past data built into architecture
- Essentially: each node *i* gets input from *i*th member of the sequence along with output from node *i* 1
- We use a special recurrent structure Long Short Term Memory (LSTM) cells
 - Capable of long-run memory
 - Ability to forget allows new parts of sequence to remain relevant

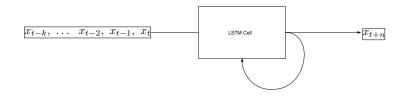
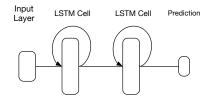
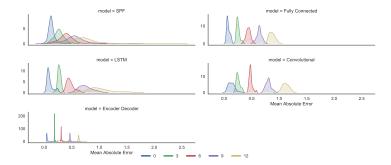

Architectures	Error Distributions	V SPF	LSTM	ENCDEC
00 0●00		00 00000		00000 0000000

Diagram of LSTM architecture

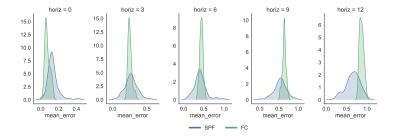
Architectures	Error Distributions	V SPF	LSTM	ENCDEC
00 00 0 0		00 00000		00000 0000000


Diagram of consolidated (rolled) LSTM architecture

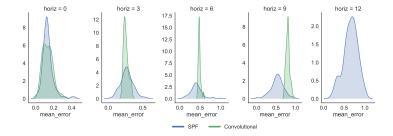
Architectures ○○ ○○○●	Error Distributions 00000	V SPF 00 00000	FC 0000	LSTM 00000	ENCDEC 00000 0000000


Encoder Decoder

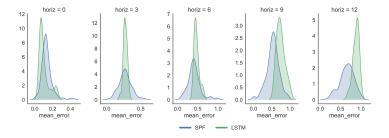
- Inspired by variable-length input, variable-length output tasks (e.g. translation)
 - Sequence-to-sequence models
 - Intuition: Assists with longer-horizon forecasts. Allows model to iteratively extrapolate short-term prediction.
 - Alternatively: Separation of data understanding and forecasting with the data
 - Essentially: Multiple LSTM cells, stacked


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000	00000	00 00000		00000 0000000

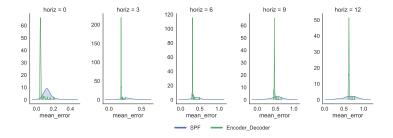
All Error Distributions


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000	0000	00 00000		00000 0000000

FC vs SPF Participant Distributions


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000	00000	00 00000		00000 0000000

CONV vs SPF Participant Distributions


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000	00000	00 00000		00000 0000000

LSTM v SPF participant distributions

	Error Distributions	V SPF	LSTM	ENCDEC
00 0000	00000	00 00000		00000 0000000

Encoder Decoder vs SPF Participant Distributions

	Error Distributions	Ensemble Models	V SPF	LSTM	ENCDEC
00 0000		•0	00 00000		00000 0000000

Ensemble Comparisons

- Use perceptron to combine individual runs into single prediction
 - Essentially linear model with individual run predictions as input
- SPF presents single prediction as median forecast

|--|

Ensemble Comparisons

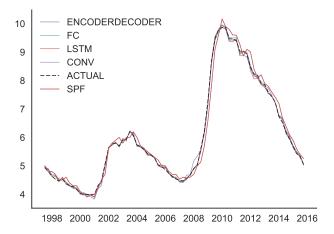
Forecast Horizon	Fully Connected	LSTM	Encoder Decoder	SPF
0 month	0.043	0.048	0.041	0.10
3 month	0.215	0.242	0.184	0.23
6 month	0.414	0.401	0.301	0.36
9 month	0.548	0.664	0.459	0.50
12 month	0.779	0.900	0.618	0.63

Architectures 00 0000	Error Distributions	V SPF ●0 ○○○○○	FC 0000	LSTM 00000	ENCDEC 00000 0000000

SPF errors for comparision

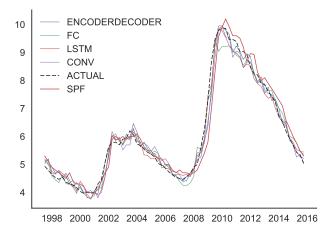
- SPF is a panel of experts. Each panelist is surveyed multiple times.
- $e = 1/n \sum_{i} 1/T_{i} \sum_{t} |y_{t} \hat{y}_{ti}|$
- This tells us average mean absolute error we would expect from single expert over time.
- SPF reports slightly different error statistics the mean average error of all experts over time this is the ensemble forecast error.

	Error Distributions		V SPF		LSTM	ENCDEC
00 0000	00000	00	00 00000	0000	00000	00000 0000000

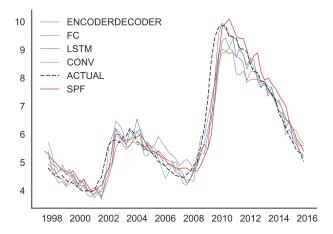

DARM errors

- The directed autoregressive model:
- $U \widehat{NRATE}_{t+n} = \sum_{i=1}^{k} \beta_i UNRATE_{t-i}$
- To be contrasted with iterative AR model in which next-step ahead is forecast and then extrapolated to desired forecast horizon.
- DARM error statistics are as reported in the SPF error statistics report.

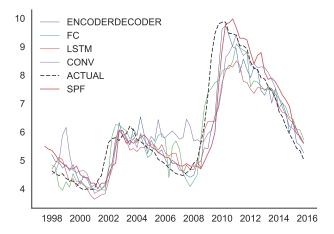
Architectures Error		Ensemble Models	V SPF I		LSTM	ENCDEC
000 000	000 (00000	0000	00000	00000


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 ●0000		00000 0000000

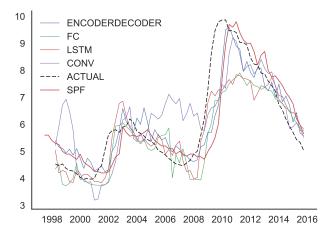
All vs SPF performance (Current Quarter)


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000		00000 0000000

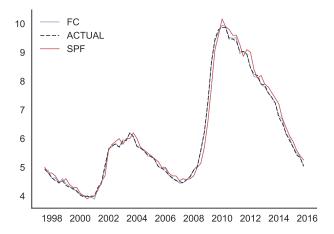
All vs SPF performance (3 months)


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000		00000 0000000

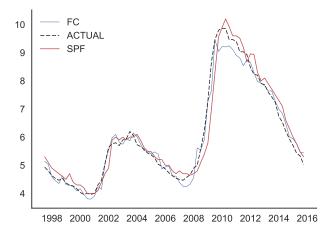
All v SPF performance (6 months)


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 000000		00000 0000000

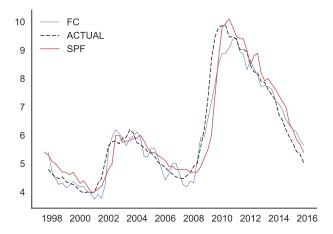
All v SPF performance (9 months)


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000		00000 0000000

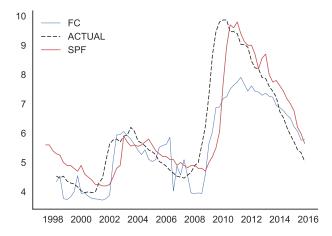
All vs SPF performance (12 Months)


	Error Distributions	V SPF	FC	LSTM	ENCDEC
00 0000		00 00000	0000		00000 0000000

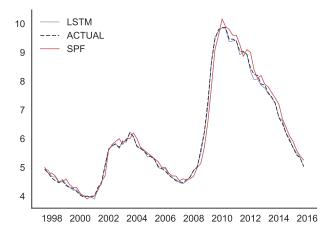
FC vs SPF performance (Current Quarter)


|--|

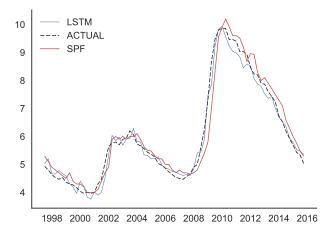
FC vs SPF performance (3 months)


	Error Distributions		V SPF	FC	LSTM	ENCDEC
00 0000	00000	00	00 00000	0000		00000 0000000

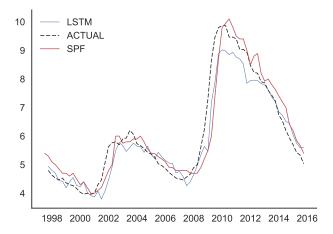
FC v SPF performance (6 months)


Architectures 00 0000	Error Distributions	V SPF 00 00000	FC 000●	LSTM 00000	ENCDEC 00000 0000000

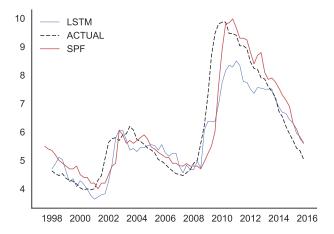
FC vs SPF performance (12 Months)


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000	•0000	00000 0000000

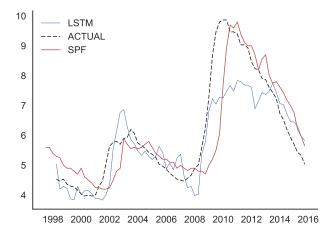
LSTM vs SPF performance (Current Quarter)


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000	00000	00000 0000000

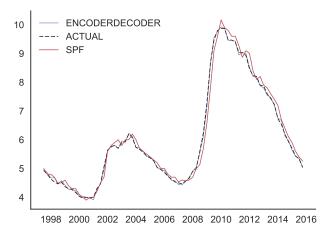
LSTM vs SPF performance (3 months)


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000	00000	00000 0000000

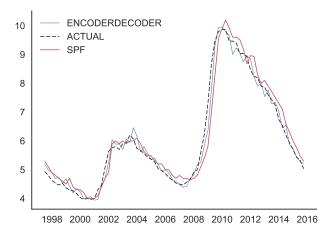
LSTM v SPF performance (6 months)


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000	00000	00000 0000000

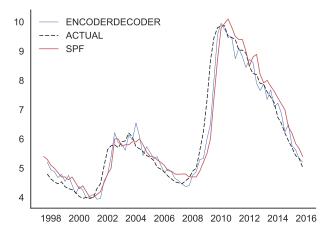
LSTM v SPF performance (9 months)


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000	00000	00000 0000000

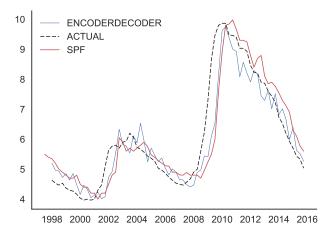
LSTM vs SPF performance (12 Months)


	Architectures 00 0000	Error Distributions		V SPF 00 00000	FC 0000	LSTM 00000	ENCDEC •0000 •000000
--	-----------------------------	---------------------	--	----------------------	------------	---------------	----------------------------

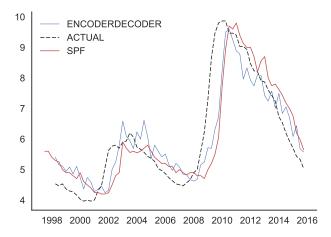
Encoder Decoder vs SPF performance (Current Quarter)


	Architectures 00 0000	Error Distributions		V SPF 00 00000	FC 0000	LSTM 00000	ENCDEC 00000 00000000
--	-----------------------------	---------------------	--	----------------------	------------	---------------	-----------------------------

Encoder Decoder vs SPF performance (3 months)

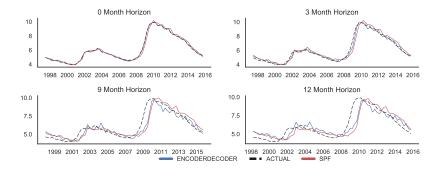

	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000		00000 0000000

Encoder Decoder v SPF performance (6 months)

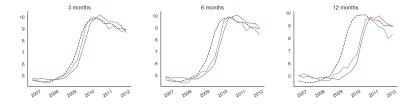

	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000		00000 0000000

Encoder Decoder v SPF performance (9 months)

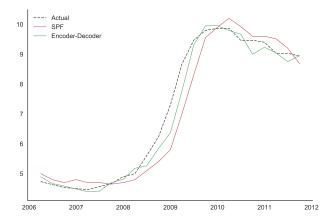
00000 0000000	Architectures 00 0000	Error Distributions	Ensemble Models 00	V SPF 00 00000	FC 0000	LSTM 00000	ENCDEC 00000 00000000
---------------	-----------------------------	---------------------	-----------------------	----------------------	------------	---------------	-----------------------------


Encoder Decoder vs SPF performance (12 Months)

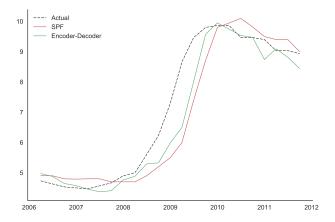
	Error Distributions	Ensemble Models	V SPF		LSTM	ENCDEC
00 0000	00000	00	00 00000	0000	00000	00000 0000000


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000		00000 0000000

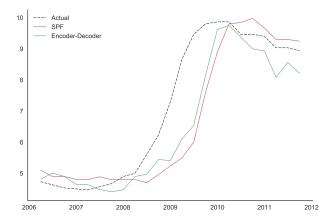
Encoder Decoder Performance


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000		00000 000000

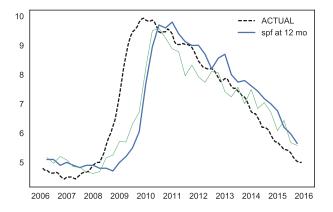
encoder decoder reaction (no smoothing)


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000		00000 0000000

encoder decoder reaction 3 months (no smoothing)


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000		00000 0000000

encoder decoder reaction 6 months (no smoothing)


	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000		00000 0000000

encoder decoder reaction 9 months (no smoothing)

	Error Distributions	V SPF	LSTM	ENCDEC
00 0000		00 00000		00000 0000000

encoder decoder reaction 12 months (no smoothing)

	Architectures 00 0000	Error Distributions	Ensemble Models 00	V SPF 00 00000	FC 0000	LSTM 00000	ENCDEC 00000 0000000
--	-----------------------------	---------------------	-----------------------	----------------------	------------	---------------	----------------------------

response table

	Encoder Decoder	SPF
Unemployment Nac	dir (Q1 200	7)
3 Month Horizon Model	Q1 2007	Q3 2007
6 Month Horizon Model	Q2 2007	Q3 2007
9 Month Horizon Model	Q3 2007	Q2 2008
12 Month Horizon Model	Q1 2008	Q3 2008

Unemployment Ap	ex: Q1 201	.0
3 Month Horizon Model	Q4 2009	Q1 2010
6 Month Horizon Model	Q4 2009	Q2 2010
9 Month Horizon Model	Q1 2010	Q3 2010
12 Month Horizon Model	Q2 2010	Q4 2010